
AD-A270 838

Technical Report 1377 A Parallelizing Compiler
Based on Partial Evaluation

Rajeev Surati

MIT Artificial Intelligence Laboratory

DTIC
rr-- LECT Ea
0TCI 19

93-24311
I !1 ' !'Il ! ,, 11V,

Best
Avai~lable

Copy

1Form ApprovedREPORT DOCUMENTATION PAGE j MB No. 0704-0188
:::;tc 1Zgor.n bu1rden t0o' his collection of information is -itimated to average I hour Der 'esponse. including the time tor - it~w ng ,tuclo.0. Weatching e-isting data sources,

gathenn and m nstlng the data needed. and conmaiettng and reviewing the collection of information Send comments rearin th'u =uden estimate or any other asoect of tis.
collection of information. including suggestions for reducing this bsurden. to Washington Headquarters Services. Directorate for Informatior. Overations and Reoci-Is. 121S Jefferson
Davis H-qhr.ay. Suite 1204 Aullnqton. VJA 22202-4302 and to the Otffice of Management and fludoet. Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE I3. REPORT TYPE AND DATES COVERED

I July 1993 Itechnical re ort
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Parallelizing Compiler Based on Partial Evaluation N00014-92-J-4097
MIP-9001651

6. AUTHOR(S)

Rajeev Surati

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

Artificial Intelligence Laboratory REPORT NUMBER

Massachusetts Institute of Technology AI-TR 1377
545 Technology Square
Cambridge, Massachusetts 02139

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
Information systems
Arlington, Virginia 22-217

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

This thesis demonstrates a comlpiler that uses partial evaluation to achieve ouitstand-

ingly efficient parallel object code from very hlighl-le~vel source programns. The source

programis are ordinary Schemne numnerical programs, writteni abstractly, With no0 at-

temipt to structure them for parallel execution. The comipiler idjentifies andl extracts

parallelismn comipletely automlaticall1y: nevertheless, it ach-Iieves speedups equivalent to

or better than thle best observed results achieved by previous supercomlputer comliplers

that require mnanual restructuring of code.

(continued on back)

14. SUBJECT TERMS 1.NUMBER OF PAGES

partial evaluation fine-grained parallelism I 58
VLIW parallelizing Compilers 16. PRICE CODE

register allocation parallel schedulin F__________
17. SECURITY CLASSIFICATION ILe. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

LTNLASI1E UNCLASSIFIED I UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Pr.-,cnubed by ANSI Stdl 139-18
298- 102

Block 13 continued:

This thesis represents one of tile first attempts to c'apitalize on partial evaluation's

ability to expose low-level parallelism. To demonstrate the effectiveness of this ap-
proach. we targeted the compiler for the Supercomputer Toolkit, a parallel mach'ine

with eight \"LIW processors. Experimental results on integration of the gravitational
n-body problem show that the compiler, generating code for 8 processors. achieves a
factor of 6.2 speedup over an almost optimal uniprocessor computation. despite the

Toolkit's relatively slow interprocessor communication speed. This compares with an
average speedup factor of 4.0 on 8 processors obtained at University of Illinois using
manual code restructuring of a suite of benchmarks for the Cray YMP.

I

& PC
c

.-.ý--.
\

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Techniical Report No. 1377 .Julv 1993

A Parallelizing Compiler Based on Partial
Evaluation

Rajeev Surati

Copyright @ Massachusetts Institute of Technology. 1993

This report describes research done at the Artificial Intclligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory s research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval Research contract
N00014-92-J-4097. and by the National Science Foundation under grant number MIP-9001651.

A Parallelizing Compiler Based on Partial Evaluation

by

Rajeev J. Surati

Submitted to the Department of Electrical Engineering and Computer Science
on May. 1992. in partial fulfillment of the

requirements for the degree of
Bachelor of Science

Abstract

This thesis demnonstrates a compiler that uses partial evaluation to achieve outstand-
ingly efficient parallel object code fr'om very high-level source programs. The source
programs are ordinary Scheme numerical programs, written abstractly, with no at-
temlpt to structure them for parallel execution. The compiler identifies and extracts
parallelism completely autornatically: nevertheless, it achieves speedups equivalent to
or better than the best observed results achieved byv previous supercomputer compilers
that require manual restructuring of code.

This thesis represents one of the first attempts to capitalize on partial evaluationrs
ability to expose low-level parallelism. To demonstrate the effectiveness of this ap-

proach. we targeted the compiler for the Supercomputer Toolkit. a parallel machine
with eight VLIW processors. Experimental results on integration of the gravitational
n-bodyt problem show that the compiler, generating code for 8 processors. achieves a
factor of 6.2 speedup over an almost optimal uniprocessor computation, despite the
Toolkit's relatively slow interprocessor communication speed. This compares with an
average speedup factor of 4.0 on 8 processors obtained at University of Illinois using
mnanual code restructuring of a suite of benchmarks for the Cray YMP.

Thesis Supervisor: Hal Abelson
Title: Professor of Computer Science andEngineering

ii

To my parents, Sudha and Jayantilal, and my brother, Sanjeev.

iii

A cknowwedgqemnts

I would like to thank Anidrew Berlin for his supplort and encouragement. lie was thle

originator of the idlea for this thesis project .1 ain most grateful to hximi for this and the

countless hours he(spent h~elping ine Nvith it. I Wvouldl also like to acknowledge Prof.

Hal AIbelson. mYi thesis ad1visor. for b~eing so supplortive.

Most of the idleas contained within are the result of an effort t~o build the Super-

compluter Toolkit. Gerry Sussman. Hal Abelson. Jacob Katzeiielson. XWillY' McAllis-

ter,. Guillermno Rozas. and Andrew Berlin were all involved wvith that effort and] have

all been a tremendous amount of hielp in helping dlevelol) the Iparallelizing comipiler.

Many of the idleas relating to scheduling dliscussedl herein, implllementedl by me. are

the p~roduct of work done by Andy Berlin and~ Guillermo R~ozas. Prof. Sussman

contributed the test application foi- the compliler.

l appreciate the tinie Prof. Hal Abelson. Andrew Berlin. and Elmner Hung p~lacedl

in aiding me(in writing this documnent and providing mie wvith valuiable advice.

I would also like to acknowledge Brian LaNlacchia, Henry Wui , Chris Hanson.

Arthur Gleckler. Franklvn Turbak, Vi~jav Balusuibrarnanian. andl Mark Friedmnan for

all the hielp they have given mie in answering miy questions ab~out Scheme. Unix. Latex

andl Computer Architect tire.

Hewlett-Packard is to b~e thanked for donating the computer equipment on which

this work was performied.

i'.

Contents

1 Introduction

2 The Compiler 5

2.1 Thie Partial Evaluator 6

2.2 Region Division.. .. 9

2.3 Region Scheduling..... 1()

2.4 Instruction Scheduling 13

2.5 Sumnnary 18

3 The Supercomputer Toolkit 19

3.1 The Toolkit Processing Nodes 19

3.2 Interconnect ion Network awl Conimnnfication.. 22

3.3 Synchronization 23

3.4 Summary 23

4 Experimental Results 25

4.1 The ii-bodv Problem... 25

4.2 Theoretical Parallelism... 26

4.3 Results 26

4.4 Summary 29

V

vi CONTENT'S

5 Comparison With Other Work 35

5.1 Trace S((ig........ 35

5.2 Softwatv Pipciiii.g . 36
5.3 \ vc.tonrizing . 7

5.4 Iterative• flest ri('t tiing...................................37

5.3 Han h di g

5.6 Stmimxtary 38

6 Conclusions and Future Work 41

6.1 ('on'lixsiofis 41

6.2 Suggestions foir Future Work 42

List of Tables

4.1 Tab)hv)f Stpeedups of applications running on 8 processors 27

vii

viii LIST OF TABLES

List of Figures

2-1 Four phase conmpilation process that produces parallel object (ode from Scheme

source code

2-2 The data dependency graph of a computation which takes the sum of the squares

of three numbers. one of which is 3.14 9

2-3 A data dependency graph for sinmple-example with its regions circled 11

2-4 The region dependenc.y gral)h representation of this data dependency graph. . . 11

2-5 A portion of an region dependencY graph with 4 regions 16

2-6 The instruction schdui:!& if the region ordering is maintained 16

2-7 The instruction schedule if lookahead is used 16

3-1 This is the overall architecture of a Supercomputer Toolkit processor node. con-

sisting of a fast floating-point (chip set. a 5-port register file, two memories, two

integer alu address generators. and a sequencer 20

4-1 Parallelism profile of a 9 hody Stormer integration[4] 30

4-2 Parallelism profile of a 9 hodv 4th order Runge Kutta integration 31

4-3 Speedup graph of Stormer integrations 32

4-4 Speedup graph of Runge Kutta integrations 33

4-5 Bus Utilization vs Processors for ST9 34

ix

x LIST OF FIGURES

Chapter 1

Introduction

One of the major challenges faced by sup)ercomputer compilers is the question of how

to identify and exploit the underlying parallelism in a computation. Mlost numerical

code has quite a bit of inherent parallelismn. However. this parallelism is often not

apparent in complex programs where the actual parallelism Imayv be hidden within

the quirks of the original source code. Currently, the most wihIelv used methods

for extracting such parallelism involve a lengthy combination of profiling comput a-

tions, identifyimig processes that can be run in parallel. and manually restructuring

the original source code to expose the parallelism in the computation. Since these

conli tmtations are fundamentally parallelizable, however. there must be a way to au-

tomaticallv extract the computations that can be done in parallel. The reason why

people have not succeeded with this iM the past is that most compilers today optimize

based on the structure of a prograin. Basically this means that these compilers at-

tempt to produce the best object code that (foes most everything the original program

does (within limits). The problem is that this miethod of compilation also reproduces

inefficiencies present in the original program. For example, the original source code

might contain inefficient methods for creating and manipulating various data struc-

CHA PTER 1. INTRODU CTION

t ures. These inefficiencies iniiglt iii t urn. hide parallelism that ixiight be p)resenit ill the

Iii I(l-eiVn g comp~ut ationis. Thus. f'or manai numnerical programs. opt imizat ion based

oil t lie st 111(4iire of' a p)Iogra~ii is hot stronig eniough to expose the inhlerenit parallelisiii

iii a compu1)Ltationi.

WXhat is needed instead is a comnpiler that asks -What are the actual compu~itation~s

being exp~ressed b this lprograii?- and~ at tempL1 ts to parallelize thle comlputat ion basedl

onl aiv inhlerenit p~arallelismi. Partial evaliat ion is a p~romnisinlg comiipiler techiiique

that -aii (10 just that. Partial evaluiationi collapses all the dlata structures and dlata

nianipulat ions in a prograiii inito the relevant comlputatilonls t hat mullst be donle ill

order for the program to produce the dlesiredl output. Thus. it automlaticallY sift~s

through the comiplex (data structures of a programn. so that it is readlilY appareiit whichl

conipuitat ions c-ai 1be done in p)arallel. Thins. p~artial evaluation is Able to expose the

ihrnpaalls ina prograin in more iliintYtanodnaYcmilationi

ieihniqes.tprlein n iu~fiin l hnodnr o

This thesis demionstrates a compliler that uses partial evaluation t~o achieve ouit-

stand ii 11'. efficient parallel object code from verY high-level (data inidepenidenit source

programns. The compiler t hat wve implemented attains parallel execuitioni anid overall

pertformiance equivalenit to or b~etter thani the best observed results fr-om the mnanuial

rest ruitturing of code . Although partial evaluation has beeii uised siicce(ssfuilly\ to (coin-

lpile efficienit sequential codle for uinilprocessor maclines. this thesis represents onle of,

the JUrst attemplts to capitalize oil partial evaluatloios ab~ility to expose low-level p~ar-

allelisin. .New static scheduling techniiques are (develolped to utilize the fine grained

p arallelismi on a miult iprocessor mnachinie. The compliler accepts ordiiiarv Scheme

prograiiis as source. and generates code for the Superconiput er Toolkit. a p~arallel

com11puter wvith 8 NLINN processinig inodes. The compiler niaps the comiplutationi graphl

resultimng from p)artial ev-aluation onto the Toolkit *s architectutre.

3

On a scientific programn written in Scheme that integrates the trajectories of the

planets in the solar svsteni. comnnionlv referred to as an n-bodlv problemn. the com-

p)iler was able to autoinatically parallelize time comnputation onto an eight-processor

configuration of the Supercomputer Toolkit and achieves a factor of 6.2 speedup over

a uniprocessor version which is running code that is executing a floating point opera-

tion(FLOP) on 99(/(of the cycles. The speedup is impressive because the Supercom-

puter Toolkit has a low communication bandwidth. A value can be transinitted froom

any one processor every eighth cycle. The latency is also quite high for a statically

scheduled architecture. Each transmission has an ALU to ALU latency of 6 clock

cycles.

An exaimn)le of typical speedups for manually restructured((hand optimized) code

is given with the Perfect Benchmarks [7]. This set of benchmarks is provided by the

Center for Supercomputing Research and DevelopmIent at the University of Illinois at

Urbana Champaign. They report that by manually restructuring there 1)enclhniarks

and using the Cray YMP compilers. they can achieve an average speedup factor

of 4 for an 8 processor CraY YIN\P over a uniprocessor Cray YMP. The compiler

(demnonstrated here can achi(ve ýit iilar speedups automatically.

By reconstructing the data dependencies of a computation expressed by a prograni.

partial evaluation succeeds in "exposing the low level parallelisin in a computation b).

eliminating inherently sequential data-structure references." [5] This is crucial for the

the exploitation of parallelism across a multiprocessor. Partial ,'valuation eliminates

all of the data independent conditional branches in a program anlt thus produces huge

sequences of easily parallelizable straight-!+,e code [3]. A basic block is essentially a

seqiuenice of operations in a comp)utation that must be execute(d once the sequence of

instructions is entered. These huge sequences of straight line numerical (ode would

be considered basic blocks. The large blocks produced by partial evaluation are

4I CHAPTER 1. IN TROD! UCTIOX

several t houisands of inist ruct ions long. In more t raditijonal comipilers. 1)asic I locks

are norniallv 10 to 20 inst ruct ions long. Huge b~locks are implort ant lbecauise their

prevlict alilitY nidkes t hem easy to parallelize.

On1 multiprocessor svstenis. basic b~locks are usually executed serially b~ecause they\

are usuially quiite small. To prolperlv exploit the fine-grained p~arallelism~ available iii a

large basic block, the basic block should h~e scheduled across a multiprocessor instead.

The p~artijal evaluation parallelization technique is conmpared wvith ot her niore tra-

(ditionial op~timlizationi methods like trace scheduling andl software Jpijeliniilg. Since the

technique can eliminates sequential data-structure references which the other niletli-

Odls do riot take advantage of, it can only serve to enhance the already excellent

p~erformlance of the traditional inethods.

Presented in the following chapters are the methods of construction andl results

from utilization of this comlpiler in the context of the Supercomputer Toolkit. Chap-

ter 2 begins byliscuissing the general structure of the comp~iler. It then dlescrib~es

each of the elements of the compiler in greater (detail. Chapter 3 presenits the nmanner

in which the compiler takes advantage of the Supercomputer Toolkit Architecture.

Chapter 41 presents the experiniental results of the compiler on sonmc scientific applhi-

cations related to the n-body problhem. Chapter 5 compares anid contrasts this novel

complilat ion technique againist other common techniques. Finall~y. in Chapter 6. the

conclusions of this thesis are p~resenlted along wvith suggestions for future wvork.

Chapter 2

The Compiler

The compilation process has four phases: partial evaluation, division into regions.

assignment of regions to processors, and the scheduling of instruction. This process

is depicted in Figure 2-1.

The Scheme source program must represent a computation which is data-independent.

The computation may not change based on the input data. Computing a croos prod-

uct is an example of a data-independent computation since the computation remains

the same even though the input vector data may change. The partial evaluator pro-

duces a data dependency graph that represents a computation at the operator(+. -.

* sqlrt. etc...) level. The data dependency graph is too fine grained to divide on a

node-bv-node basis because of the communication latency. Its granularity is a little

greater than one cycle per operation whereas a communication takes slightly more

than six cycles. The granularity is made slightly coarser by dividing the graph into

regions which couple computations which should occur on the same processor becaus'e

of the communication cost. The region dependency graph is then divided amongst

various processors using a graph multisection technique similar to list scheduling. Fi-

nallv the individual regions are scheduled at the instruction level onto the architecture

6 CHAPTER?2. THE C'OMPILER

to forni the parallel object code for the Toolkit. The inner workings of each of the

phases is p)resenlted inl the rest of the chapter.

2.1 The Partial Evaluator

The partial evaluator is used to eliminate data ab~stractions and comp~ound (lata struic-

tures at compile time. This leaves only the numerical computation dlata dependenc.\

grap~h. It also) results inl an order of magnitude speedup of scientific codles [5]. The

p)artial evaluator utilizeol by this comp~iler was written by Andrew Berlin. A niore

thborough discussion of the p~artijal evaluator is containedl inl [5].

Berlin accomplishes partial evaluation through a technique that uses lplacelioldlers

to propagate inltermedliate results. The placehiolders are also used to represent odata

whichi is not known at complile timne in the input data structures. It is then p~ossible.

by using these placeholders inl the place of actual data. to symbolically evaluate the

comp~utation with respect to the input data. Ani op~eration is (omiputed if thle Input

data is actually available. Otherwise. a niew placehiolder is created to symblolicallY

represent the resuilt of that computation and~ the evaluation imay proceed. .A dlata

dlep~endency graphl of the conmputation is constructeod bkeeping track of all thme op

erations which are p)erformedl onl the (data andl the intermediate values. A simple

example' to illustrate this follows:

'This exampl)e appears in [5]

2.1. THE PARTIAL EVALUATOR 7

Scheme Partial
Source

Evaluator

Region

Divider

Region

Scheduler

Instruction Paraflel
ýW Object

Scheduler Code

Figure 2-1: Four phase compilation process that produces parallel object code from Scheme

source(code.

8 (CHAPTER 2. THE COMPILER

(define (square x)

(* x x))

(define (sum-of-squares L)

(apply + (map square L)))

(sum-of-squares (list (make-placeholder 'a)

(make-placeholder 'b)

3.14))

Iii the above (ode tihe sum of the square of three numnbers. one of which is known.

is computed. The data dependency graph of the computation that is produced by

the partial evaluator is shown in Figure 2-2. The partial evaluator eliminates the

data abstraction and reduces the computation to the nninimln numl)er operations

necessary: two adds and two multiplies(3.14 is a known input, its square is computed

at compile time.)

In addition to producing the computation's data dependency graph. the partial

evaluator employs a number of other optimizations that are now possible becaulse of

the elimination of data structures. Examples of this are (lead (ode elimination and

constant folding. Dead code elimination removes operations from a computation if

they do not contribute to the net result of a computation. Constant folding might

reduce an expression like2

(* 10 x 5)

to:

(* 50 x)

211, Scheme a miultiplicationi with multiple arguments is commutative.

2.2. REGION DIV ISION 9

a b

9.8596

Figure 2-2: The data dependency graph of a computation which takes the sum of the squares of
three numbers, one of which is 3.14.

The end result of all of the partial evaluation is a data (tel)endencv graph which

represents the actual numerical operations nee(de(d to compl)ute the results based on

the input information and programi presentedl to the compiler.

2.2 Region Division

The cost of commnunications on the Supercomputer Toolkit is effectively six clock

cycles. The data dependency graph's granularity is such that most instructions are

computed in one cycle. The granularity is too fine, because it is not implicit that some

operations should be computed on the same p)rocessor.:. In order to make such things

implicit. a coarser grain graph called a region dependency is created. Operations in

the dat.a dependency graph are collapsed into regions. A region is a (onmputationl

which ends with a transmission. The only things that should be transmitted are

3One attempt at addressing this issue is discussed in [10].

10 ('IAPL El 2. THE COMAIPILER

valties which are inputs to more than o1e opel'atilnl.

A simple algoritkhni creates a region (htependh'cy graph froii a datt (t(pendenc(y

graph. A region ends iII al i operation whose result is lised I I l) re lthaln o1e, other

o)t)eration. A region has only one such op)elralionl. A co(urse -rainied Ilegioll (heill-

deicV grap)h iiaY be created t ol of a dat a deeI)ency gIlaph 1)v si!ply lalblinig each

opelation 01node il the11 da|il depeldell(y gra•ph itas i regioll aIld Ih ll l olnliilli ,g ea(cl

of t l•e operations (einlporarily labeled i as a region) with i a single dependent into) the

region of tht li hli)cient. This leaves a lregioln for each olpeation that cither has

1111ltiple del)lildllts or 'esullts ill il 0t1ilt. o)ultput1 . Each legioli has depeldenciis

on regions that ('olltaill o)perat ionis th tl thle opt'rations the region (ec')liils(se have

h'peiidenlc'ies oil.

Au exaiiiple is shown in Figures 2-3 and 2-4. whvre the datia dependency graph

for the following (codhI is shown and turned into a region dehpendhenc'y graph.

(define (simple-example A B C D)

(let ((E (U B C)))

(* (- (* A B) E)

(+ D E))))

The algorithil places the multiplications. additions and sub)tractio1s into oiic r,-

gion. The division operation is placed into anot her region because nuiltiple operat ions

arc dhepend(enht upon it. The gramularitv of the graph is inad(l closer to the desired

(oarseiness through region division.

2.3 Region Scheduling

After the data dependency graph is collapsed into a coarser grained region (hepen-

dency- graph. it is possible to sched(ile the regions onto a nuiiltiprocessor. This is the

2.3. RECGION SCHEDU'LING 1

R2

Figure 2-:3: A data (IepellddlcY graph for simple-exampl)e with its r;gionis circled.

A D

RI
4

Figure 2-4: The region dlepenidenicy graph representationl of thins dlata depeindency graph.

12 CHA PTElR 2. THE (COMPIL ER

tradlitijon al iiini It ipio(essoi. sledI II itg' probl emi of scliedlinlg tasks oiil)I)('essonss51c(1

that execuitol MOile Is 11W if iiiiiii/edl. This is known to be at -stronig N P-hard problem

t16]. IliurelY hlietiist ic methlodls ar~e justified oni such1 at problem. its long a.-, IheY (to)

weloil average. The lietiristi it sed hier relies onl at critical p~ath1 weight ing Sullileie

all1(1 verY akin to list sclledullnuitg. Tlhere aret tw step Sto(~) tOIhis hieiirist iC:

1.Lach legio ll 1 assign ed I weight which is th lehatcei IV of, thle longest patIih)IiiOl

the regio lote regions whichi end thle graph1i This is the suim of' the hat enties

of, thle regionis allp htpt.ToltnYo*teregion is the stin of' thle

op erat io l 15 it couit allis. since t heY will all occuir o11 thle 5dain processor.

2. Schedeule thle regionis

"* 11 thiere are n l) 110 re"'Joiis to be scheliehled. uilt.

"* ('om iqlt e thle ready regriois adli order themi by weihit. The readly reuOuils

are thle onles that are not onllY reathr to b~e eXeclitedl. but have at weight

that is appiroximia tely eqjuivaleiit to the weights of the the regionis readly to

execu zte withi thle largest wveights.

*If' there are miore reatlv regions than p~rocesso~rs not executing a region.

take at proc)(essor and~ schieduile thle region whichi requires the least amoinuti

of, comimiunicat ion to execuite oil that p~rocessor.

"* It* there are less regilons thlen p~rocessors. schiedulhe thle region onl the proces-

sor onl which it reqIuiires thle least aniount of comiimunicat ion to executite.

"* Conit 1111W scheieluling.

TIhe commuiniinicat ion (co st of at region onl a processor is thle numbl er of regions- which

that regionl is dlepenldenit onl whose results are not inl thle processor's menio'y.

A set of regions orderedl ill sequneice of execuntion is produced for each processor.

Whien ia regoions result value hias been computed. it is liet'essarv to tranlsmlit thle

2.4I. INS TRUCi TIO N SCHEDULiING 13

valuev to thle ot her processors which1 have regions waitinig to b~e executed delpendent onl

t his result. Hfall of the dlepend~enit regionis lhappeni to lbe onl th1e samie processor. thle

t raulsnuis'sionl is uiui1ecessarv. Ot herwise. it will cost six (Vcles to t ranismitt the result

to thle ot her p~rocessor.

The niext step is to schieduile thle indi~vidual instructions withliin the regionis t heml-

selves. Before going into exp~licit dletail ab~out the schedulinig of instructions, an as-

sti~nlptioli made (hiring region scheduling imist b~e niade clear. The assumpiltioni is

that a region's resultant value t hat is transmit ted will b e availab~le as soon a~s it is

comipuited. To closelyv appr'oxuimate this. the transmnissions have the highest priority ini

schieduiling. As s00on as ani op~eration that prodluces a value t hat should be transmit tedl

is scheduled, thle t ransmission is ininniediatelv schedhuled onl the earliest cYcle possible.

2.4 Instruction Scheduling

The instruction scliedluler miaps instruictionis in each schedunled region onto each pro-

cessor at the instruction level. In the case of the Supercomnputer Toolkit. Very Lonig

Inistructioni Word1s (LIX\) imist be generated for each lprocessor. This task is not

trivial. siiice it requires tihe scheduler to ordler the nuimerical operations onto the ar-

chitecture so that the total execution time is mininmizeod. This is tough to do because

thle ordlering of operations cani effect. the miumber of cycles necessary to complpete the

p)rograin. For example. suppose there is a value reqiuiredl bY several other operations

oii other p~rocessors. The later the value is p~rodulced, the later the other operationls

can occur. This cani be a big problem oni a p~arallel processor sinice it is possible t hat

a processor will waste cycles while waiting for one of these values . Anot her effect is

miore suibtlhe. The registers ini a m~achiine are used to store temlporarv rsuilts. The

mnore often a p~articular vahie ini a register is used whilc it is there mevans fewer loads-

and~ stores may be necessary from andl to ieinorv. therebn' redutcinig the chance that

14 CHAPTER 2, THE COMPILER

the processor w1ill1 become idle waiting for memory transactions.

.Mlost compilers for VLINV machines attempt to iniiiiinize execution tiine by con-

sidering either of the issues mentioned above. but not both siiiultaneously. The

instruction scheduler deals with both of these issues througt, operation reordering

andi a technique for register allocation that attempts to minimize lnellorV reference's.

Two phases of scheduling are required. During phase one an instruction ordering

is suggested and a plan for register use is created for the minimization of instruc-

tion references. During phase two the plan developed in phase one is followed, and

instructions are reordered to better match the architecture.

During phase one. an instruction ordering is generated within the bounds of the

region imposed ordering. Regions couple computations which contain intermediate

results which will be used only once. This is because the operations encompassed

in a region have a single dependent. Placing these instructions close together in the

code is good because it guarantees that the intermediate values of each region will

never have to be stored and loaded to inemory. The ordering goes a long way toward

minimizing instruction stores and loads as it is and is a good first order solution to

the problem.

Traditional register allocation is performed during phase one. The region ordered

instruction ordering is followed precisely without any consideration being made to

a pipeline or other architectural specific features. Register instruction groups are

created which indicate what instructions were schedumled that use a value while that

value was in a register. Each time the value is placed into a register. a new register

instruction group is added to that value's set of groups. The groups are used by the

second phase to determine which registers are free to use on a given cycle as well as

which register has the value whose earliest use is farthest in the suggested instruction

ordering. This is useful whenl determining which register to place a value in when all

2.-i. INSTRUL CTIO N SCHEDUL LING 15

the registers are occupied 1w other values that are needed 1w operations still waiting

to b~e executed. The instructions groups are the plaii that is followedl to load1 anid

store registers dulrinig phase two. The stores are knowvn as, register ..Spliiillg."

Aui exampille of anl instruct ion register groupin~ ight be hielp~ful. Suppose B is a result

which is anl input operand to three operations numbered 20. 21. And 300) (where ai

gr'eater niumbier implies tile later it should b~e schiedulled1) Suppose B is placed ill a

register oil cycle 19 and1 is spilledl (diring the register planuning allocation iii phase one

b~etweeni instruction 21 and 300. T1he instruction register inistruct ion groups for B

would1 be f2() 21 } and {300}.

Plias(two takes p~hase oiies instruction ordlering and~ op~timiizes it for the archii-

tectuire. It schedules ill tile sliggostedl instructioii orderinig. looking ahead only when

thle instructioii that shiouild be schieduledl accordling this ordering is not readlv to be

executed oil that cycle. This redulces execution time because it fills in what wvould

have been NOPs(No Operation) cycles. There are two reasons there mnight b~e enipitY

NOPs. One(reason is that the dependencies of regions niav reqluire such a (lelaY. The

other is that architectural issues like lpipeliniIng mnay leave a result inaccessible for a

cycle and~ this wasn't a considleration in phase one.

The advantage caii be exp~lained1 better with anl example that show one wvay phiase

two is ab~le to op~timizes. In Figure 2-5 are four regions which are part of a larger

regioni dependency (liagraiul. The regions, are b~eing scheduledl onto a two processor

configuration over the course of 8 cycles. B4 is composed of three inistructions which

each take a cycle to execute. one is dlependenlt onl RI and the others onl R2. Figure 2-6

shows the schedule if the instructions were sclhedluledl in exactly the ordlerinig imiposed

bY regions. since the other two instructions in R4 are dlepend~ent only oii R2 finishinig.

they may b)e executed in the two free cycles after R2 finishes. thereby possiblYh reducing

the execution time onl processor 2. Figure 2-7 shows t~his optimization. Thus it is

16 CHAPTER 2. THE COMPILER

Figuire 2-3: A p~ortioni of an region dIependency graph with 4 regions.

Cycle Processor 1 Processor 2

2

3 Ri

4

5

6

7

8

Fig ire 2-6: The jn u'nschedule if the i-egion orderinig is miainitain~ed.

Cycle Processor 1 Processor 2

1 IME/ .> /4/

2 '

3 RI

4

5
6

7

8

F igi ire 2-7: The instruct ion schedule if lookaliead is used.

2.4. IN'S TI? 1CTI)N SCHEDUi LING 17

easy to fill iii t hese NOPS wvith instruction further dlown iii the ordlering.

Wh len inistruict ion reoroleriiigs occurs. t he p)lannIing conltainedl in the register Ill-

st rlctioll group~s becomies useflil. Register' spilling is scheduled for all values which

lie thle register planner spilledl. This mevans a valuie is inunedliatelv stored1 in minenorv

as sooni as it is p~rodlucedl if it was~ spilledl in p)hase one's5 lreallocation. Thus. any

sp~illinlg that occurs in excess to this is due to the instruction reordlering ando the val-

lies it p~rodluces. Register groups providle a means to figure out which of such values

in the registers should(b~e sp~illedl. The other register are filled wvith values which are

intendled to b~e there lbv the phiase one(allocation andl that should will remain there.

It is only the remaining registers fromn which a value must be spilled. This (an be

(dine because the register groups of a value are (IvuaiicallY upd)(ated to reflect the

execution of anl operation each time anl operation is lperforllled The register groups

thus contain upl to (late information about when anl operand will lbe needled in the

phlase one ordering. Instruction executedl out of ordler are elliniuincl ed from the groups

as soon as theyv are execultedl. Thus, one c-aii spill the register that is usedl the latest

in the o1(1 instruction ordering of the remaining instructions t~o be executed. In these

cases, two memory cycles are lost(one to store one to load). At worst one NOP is

caulsed because of this loss of iieniorv cycles aind the gain of a FLOP c~cle fromu

having lpreschiedllled the op~eration that p~rodulcedl this -value is lost. It may mean that

a mnemory op~eration is gained because some other instructions using that value have

already occurredl while that value was inl a register. One(less reference to the value

is mnade anl(l this allows a register to become free soonier thani it was in the region

ordered instruction. Execution time is thius shortened 1w taking advantage of the

holes inl thle region imrposed instruction ordering that w~as used in anl effort to try to

miinimnize inienorv references.

18 CHAPTER 2. THE COMPILER

2.5 Summary

In this section a inethod of parallelization basedl on partial evaluation was presented.

The method s compilation process results in some highly coompacted parallel object

code that executes a basic block across a parallel computer to try and take advantage

of fine grain parallelism.

Chapter 3

The Supercomputer Toolkit

The purpose of this chatpter is to provide an overvie•w of the Super(computer Toolkit so

that the comp)ilation results may be understood. The Supercomputer Toolkit is not a

general purpose computing machine. It is optimized heavily for the static and data-

independent nature of numerical problenis. Thus. the Toolkit has no operating system

and is a backend processor for a workstation, much like \VARP [6]. The Toolkit is an

8 processor MIMD machine. It is composed of eight separate VLIW processing nodes.

A thorough explanation of the technical details of the Supercomputer Toolkit may

be found in [1] A detailed explanation of the compiler's view of the toolkit processor

boards . the interconnection network. and the synchronization mechanism follows.

3.1 The Toolkit Processing Nodes

Figure 3-1 shows the architecture of each processing node. It is syinmetric and de-

signed to take advantage of a lot of instruction level parallelism. Each node has

a 64-bit-floating-point chip set, a five-port 32x64-bit register file. two separately ad-

dressable data memories, two address generators for those memories, two I/O ports. a

19

20 CHAPTER 3. THE SUPER('OMPUTER TOOLKIT

ialax"

.i i. 110, Ixl

tl +0REG19MR LE

+ x

Figiure 3-1: This is the overall architecture of a Supercomputer Toolkit processor node. consist-

ing of a fast float ing-point chii) set, a 5-port register file. two memories. two integer ali address

generators. anld a sequencer.

sequencer, and a separate instruction memory. A Toolkit Processing Node is pipelined

and thus capable of executing the following instructions in parallel: a left men)ory-I/()

operation, a right memory-I/O operation, an FALU operation, an FMMUL operation.

and a sequencer operation. all on a single clock cycle. The Toolkit is completely syn-

chronous and clocked at 12.5 Mhz. When both the FALU and FMUL are utilized. the

Toolkit is capable of a peak rate of 200 Megaflops. 25 on each board. The compiler

as it is currently written c'an only harness 1/2 of this capability because it utilizes

either the FMUL or FALU. but not both. on any cycle. When the compiler is used.

the peak computation rate is 100 Megaflops

The compiler's interpretation of the 32 register file is that 26 are available for

3.1. THE TOOLKIT PROCESSING NODES 21

scheduling computations. Au additional two of the registers are reserved for comninu-

nication purposes. The remaining are reserved for hardware purposes and are thus

unavailable.

The floating point chipsl can compute many different functions. thm, utilized

bv the compiler are:

FLOP Latency

+ 1

- 1

* 1

/ 5

sqrt 9

The floating point chips have a three stage pipeline whereby if an operation is

scheduled on cycle N. the result must be latched on cycle N+L(where L is the latency

of the computation) and (an then be placed in a register on any of the following cycles

up until the the next latch on that 1/2 of the chipset. There are feedback paths for

the chips which allow operands produced while in the pipeline to be fed back in on

the next cycle. The compiler takes advantage of these feedback mechanisms and finds

them particularly useful for the intermediate values which have only one dependent.

If the path is utilized no register needs to be used to store the value. This can save

memory cycles.

A single basic block is scheduled bv the compiler. This means there is no control

flow. Thus the compiler can simply schedule sequencer instructions which increment

the program counter on each node.

Since partial evaluation eliminates data structures in a computation, the only way

t<o address a value is its memory location on a Toolkit Processing Node. Thus the

CHAPTER 3. THE SUPERCOMIPUTER TOOLKIT

add~ress genierators are su tlisedl to generate the hard codled add(resses for thlese

valuies oni anyv inst ructionl.

The complliler's nlotioni of iiieniory mniiagemlenit is simplylI to put thle iniput s and

constanits of, at colinplitat ion at the lbottorn of inentiorvy. There are copies of' tblenil

on Ibothi sides inakiiig it easier for these values to be accessed as there are thius two

p~athis for a value to the register file. Evervthiiig above the constants and~ Inpluts

are initermiediiate values aind outputs. Spills due to phase one scheduling alternate

lbetweenl ineiiiories. It should also be noted that oni anyv one sidle. eit her a ineniorv

loador 0 store. or anl 1/0 t rainsmissioni or recept ion onl dX onie cyc (le inay b~e scheduleid.

3.2 Interconnection Network and Communication

The toolkit allows for flexible Interconnection amiong the boards through its two 1/0)

ports. The interconnection scheme is not fixed and nianv ,ol ifiguirat ionls are possi1ble.

The comipiler. however, currentlY views this network as two sepa.rate buses: a left and

a right buis. Each toolkit is coninected to these buses thr'oughi its left and right 1/0)

p~orts. This conifiguration wvas chosen given the niumbiher of processors as a reasonable

network to evaluate the compiler onl.

Here, is anl examphIle of the staticall'y schedtuled commuunications transactionis that

are possible onl the toolkit . A value is setnt froin Processor A to Processor B on, clock

cv('le 1. Processor B will execute anl instruction that r~eceives that value onl (lock c\~(he

3. Thius. the latency of anY comtunuicat ion. once-(it is sent. is always 3 clock cycles.

During the interim (-v(lIe(2) when the transmission is sent no other transmission oii

that bus1 m-iay occur.

The compiler does all of the static scheduling and~ operates within the constraints

of the toolkit. It also addls the extra constrainit of storing all of the values that are

t ranismiittedl ininediately after the value is receivedl This ensunres that the register

3.3. S'INCHRONIZATION 23

allocation and instruction scheduling strategies are not interfered with by cominuni-

cation. The latency of a (commiIunitcation is thtus eftecti\,elv 6 cycles from ALU to ALU.

It take 6 c'cles fr'om the time a values is produced. put in a register. 111(d sent on the

bus until it is available in one of the computation registers of another processor. Also.

because there are 8 processors and two busses that each take two cycles to transniit

over the effective bandwidth available to a processor is one send every eight cycles.

This is an extremely low bandwidth niachine.

3.3 Synchronization

In order to coordinate processors to execute a basic blocks within the constraint of

synchronized instructions, a mechanism is iecessarv to get the processor to operate

in lockstep. The processors are operating on a single global clock. this does not

guarantee that they are operating in lockstep however. They need to be synchronized

precisely so the static transactions with implicit send and receive protocol will work.

The toolkit provides a global flag and subroutine that allows the boards to be brought

into lockstep. The compiler uses this mechanism to get the processors operating in

lockstep at the start of the basic block. Since the blocks are so large. any cycle wasted

on synchronization are statistically irrelevant.

3.4 Summary

A detailed description of the Supercomputer Toolkit hardware and its capabilities as

utilized by the compiler was presented. In the next chapter the result of using this

compiler for the Supercomputer toolkit are illustrated on the u-body problemn.

24 CHAPTER 3. TiE SUPERC()OAI -TER TOOLKIT

Chapter 4

Experimental Results

The l)erformanll('e of the (comtpiler has been evaluate(l on the Sutpercompiiter Toolkit by

co(mipiling t vo scieint ific ap•)licat ions. These tXwNO s('ientifi(h a)T)li('at ions are siniilat iols

of the fl-t)odv prob~lem. The compiler is able to achieve sulbstantial st)pe(edu)s (desp)ite

the low b)andwidth interprocessor coilmmunications of the Toolkit. In this chapter.

I presnt the theoretical parallelism possible for each at)l)lication anIdl the (onipiler

ineasuie,(l exI)loitation of that parallelism on the Super(oinput(ut, Toolkit. The region

sciheduling comnpiler tec(hnique though suitable for simall multiprocessors is shown not

to scale well.

4.1 The n-body Problem

The ti-l)(olv problem is the ('omlputation of trajectories of ii n)arti(cles with each parti-
cl, exerting I- central force on each of the other the b)o(dies. Numnerical simulation of

the i-bodY p)rol)lem is important for a mmiiber of research applications [2]. Though

the two ap)l)lication represent simulations of the sanie problem. they repr ý,,emt •ignif-

icantlv different iniiii-rical comp)utations. This is b)ecause tlhex' utilize two different

25

26 CHAPTER 4. EXPERIMENTAL RESULTS

numerical integrators. One integration iiethod is known as Storiner and the other

ats Runge Kutta. They b oth represent data independent computationis. Both ap-

plications calculate the positions of planets in the solar systems. Thlls. the masses

of the bodies are known at compile time. The programs are essentially integration

stels that need to be iterated over and over again. Each integration step produces

new positions and velocities of the planets which are then used as inputs for future

steps. Simulations that take hundreds of hours of CPU tine are often performed

using programs like these.

4.2 Theoretical Parallelism

A parallelism profile of a 9 body stornter integration and a 9 bod~y 4th order Runge

Kutta integration are shown in Figures 4-1 and 4-2. Both figures represent the inaxi-

mal parallelism in these problems. They show how quickly the computations could be

computed if there were an infinite number of processors , infinite communication and

meinorl bandwidth, and instantaneous communication amiong processors. Because

the number of processors utilized on each cycle is greater than 10 in these profiles.

there is plenty of underlying fine grain parallelism in the actual computation that

could be exploited by this compiler on an eight processor machine like the toolkit.

The major difference between the parallelism profiles of the two computations. is that

the Stormer integration has substantially more parallelism available at the start of

the comitltatioil.

4.3 Results

Four different computlations have been comnpiled in order to measure the perfor-

nMance of the compiler: a 6 body stormer integration(ST6). a 9 body stormer in-

4.3. RES[ULTS 27

tegration(ST9), a 12 body stormer integration(ST12). and a 9 b)ody fourth order

Runge Kutta integration. The speedup measured is the single processor execution

time of the computation divided by the total execution tine on the multiprocessor.

The number of single processor cycles are compared with the eight processor number

of cycles in Table 4.1 along with the number of NOP cycles and the efficiency of

utilization. Because of the partial evaluation, the single processor efficiency figures

are extremely close to optimal.

Program 1 Processor NOP Cycles Single Processor Eight Processors Speedup
cycles efficiency cycles

ST6 5811 16 99.7 %, 954 6.1
ST9 11042 32 99.7W 1785 6.2

ST12 18588 32 99.8% 3095 6.0
RK9 6329 15 99.7W% 1228 5.2

Table 4.1: Table of Speedups of applications running on 8 processors

Such efficiency indicates that the speedup measurement shows precisely the gain

in actual floating point computation by scheduling onto a multiprocessor like the

Supercomputer Toolkit. The gain due to these techniques which automatically par-

allelized the computation are very much in line with what one expects when running

computations on an 8 processor machine like the Supercomputer Toolkit.

Figures 4-3 and 4-4 show the speedups that were attained on toolkit configurations

with different number of processors. As indicated above, the speedups are fine for

an eight processor machine since the graphs seem to show reasonable gains up to

about eight processors. It is clear in the graphs that the scheduler is not doing too

well for more processors than that. There are two reasons that account for this

drop off. One is that the Supercomputer Toolkit has an extremely low interprocessor

communication bandwidth. The other reason is that the region scheduling does not

28 CHAPTER -4. EXPERIMENTAL RESU LTS

scahle wll hevyod eight processors.

Bandwidth is it problein because the amount of communication 11necessary tends to

increase as the computations are spread out over more processors. With a bandwidthi

such that of each processor is only allowed a send every eight cycles, the speedups

are very impressive. To address the bandwidth issue. bus utilization data was col-

lected for all the programs. The results are shown for ST9 in Figure 4-5 and are

characteristic of the other programs. The bus utilization measurement indicates the

percentage of cycles the buses are busy. It is the sum of the cycles that each bus is

bus-y divided bv the twice the total number of cycles executed (twice because there

are two buses). The bus utilization graph coupled with the speedup graph of this

computation suggest that the two bus architecture is indeed quite inadequate after

about 10 processors. If the busses are utilized more than 90(. of the time there is an

extremely high probability that sends which were instantaneously scheduled by the

region scheduler are being delayed a lot. This is bad because the region scheduler

assumed instantaneous communication. In the bus utilization diagram, the drop off

in speedup occurs when there is about 70%, bus utilization. Interestingly, in the data

for the RK7 and ST6 and ST12 this is also true. This may suggest that 70(,/ utiliza-

tion makes the bus busy enough so that transmissions suffer from longer delays until

transmission than when less processors were being scheduled.

Another problem is that region scheduling does not seem to work well for more

than eight processors. The region scheduler partitions the regions and turns a 6329

cycle R K9 into 854 cycle RK9 on an 11 processor ideal machine(ideal because it has

instantaneous comnmnications). This is a very big problem because that 854 cy-

cles represents the best that can be done by the region scheduler if all the values are

available as soon as they are produced. That is only a factor of 7.8 speedup for 11 pro-

cessors. There is more parallelism available than that. This can be seen quite clearly

4.4. SUMMARY 29

in Figure 4-1. Luckily, the instruction scheduler is able to reorder the instructions

suitably such that the effect is reduced and RK9 is turned into a 780 cYcle comiputa-

tion. Nonetheless. for more processors than (eight. the region sche(duling (doesn't seem

to work well. It is unable to extract the fundamental l)arallelism as demionstrated

by these computations far below where it should for more processors.Compiling for

larger computers than the Toolkit this could be a very big problem.

4.4 Summary

By compiling two applications it has been shown that the compiler is more than

adequate for compiling basic blocks on an eight processor machine like the Super-

'omputer Toolkit. The compiler, however, has difficulty on larger multiprocessors.

There are two things that lead to this difficulty: the architecture imposed low band-

width communications and the inability of the region scheduling method to work well

on larger multiprocessors.

30 CHAPTER 4. EXPERIMENTAL RESULTS

900

"o aoo-.- - - -

700

6-

5O

4W

300

100

0
0 5 10 15 20 25 30 35

Cycle number

Figure 4-1: Parallelism profile of a 9 body Stormer integration[4]

4.4. SULMIARY 31

Runge Kutta 9 body Parallelism Profile

300-

" 200-

100-

0

0 20 40 60 80

Clock Cycle

Figure 4-2: Parallelism profile of a 9 body 4th order Runge Kutta integration

32 CHAPTER 4. EXPERIMENTAL RESULTS

SPEEDUP VS PROCESSORS
N-body Stormer Integrator

14 ...

13 .7

12..
"** ST6

S.'.,
11 -*' s11..

.Idea Linear

10-

W7--8-.

Ul~ 7 ".-["

5

4-

3 - -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PROCESSORS

Figure 4-3: Speedup graph of Stormer integrations.

4.4. SUMMARY 33

SPEEDUP VS PROCESSORS

RUNGE KUTTA
14 - -

13 --

12- K
11 -- Ideal Linear - - -

w7-----

1n 6

05 --- - - -

o4 246811111

P rocssr
Fiue34 pedpgahofRneKta nertos

34 CHAPTER 4. EXPERIMENTAL RESULTS

Total Bus Utilization vs Processors

100-

90-

80-

70-

60-

Sso-Ca

40-

30-

20-

10-

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Processors

Figure 4-5: Bus Utilization vs Processors for ST9.

Chapter 5

Comparison With Other Work

This compiler's approach to parallelizing numerical programs is fundamentally differ-

ent from the approach taken by other compilers. This compiler specifically optimizes

the computation contained within a program. Other comp)ilers are more general and

are designed to op)timize the execution of the program. In order to put this work into

perspective, five different approaches including trace scheduling, software pipelining.

vectorizing and iterative restructuring are all compared and contrasted with this com-

piler's methodology.

5.1 Trace Scheduling

Trace scheduling [9] is a popular technique used by parallelizing compilers. The tech-

nique creates traces of the most frequently used path of basic blocks in the control

structure of a program. The basic blocks are typically on the order of 10 to 20 in-

structions. Run time information that keeps track of the various traces through the

program is used to determine which trace should be optimized. This trace is then

heavily optimized as if it were a huge basic block. What this approach does not take

35

:36 CHAP~TER? :3. C'OMPARISON IVITII OTHER WVORE'

inito a(ccounft is t hat Iiiaiiv of, thle ibranchle. it selects are (dat a indlepeindent alli dl ca] be

predlicted(basedl onl (011mpile t ime informiation1. Thiese braniclhes cani b e elimuiated'(

Thle part ially e'valuat ing p)rallelizinig compliler appIroachi Is alble to(coldlapse dat a-

ind~epend~enit porti1on1 of thle jprograiii Inito large basic blocks withlouit thlese branches.

The part iallv evaluiating compliler can guarantee that thle right set of* brandlies InI thlese

p)ort ions of' codle are(taken bYv simply eliminat ing thlemi. This is better than t rving to(

lprolbalilist icallY dleterminile the branch dlirect ion . Aniot her sliortcomiiiii of' thle trace

sclieduiling approach is that it lacks partial evaluation~s albilitY to remiove inhiereit lY

sequienit al dat a-struictutre references. Tins means that thle trace schedulinig techniqiute

1)\ itself, will not be able to take advantage of the all the inherent parahlelisiii in at

compu)Itation.

One(thing that trace scheduling is good at is op~timizing data dlependlent branches.

11u11 tine inforniat ion can be uisedl to reliablY predIict whliich \\a.\ thle branches typicallY

go) anid substantial optimization may be p)erformnedl On the resulting- trace. .Agood

strategy wouild be to couple b)othI techniquiles. Partial evaluation would do a good j]oil

optinizing (dat a independent port ions of the compult~at ions. whereas trace scheduling

would (10 wvell with the data dlep~endent p~ortionis.

5.2 Software Pipelining

Softwvare Jpipelining [11] optimnizes a part icular fixedl size loop structure so that several

iterations of the 1001) are startedl on (different processors at constant intervals ili tine.

This increases the throughput of the computation. Using p~artial evaluation on suchl

a loop structure would result in the 1001) being comp~letely unrolled wvith all the (data

structures references rem~ovedl and~ the total parallelism of tile operations executed inl

that loop b~ecoming available and1 visib~le for parallelization.

5.3. VECTOIRIZING 37

5.3 Vectorizing

Ve'torizing is a (conmmonlv used ol)timization for vector sulpercomputers. .Matrix

multiplies are an example of* computations which can ble done quickly on machines

like these. Vectorizing conmpilers look for specific operations on arrays of numbers in

ineriory. The comp)iler caan then vectorize to execute these operations in parallel on

the numnbers in the arrays. These computations need to be expressed in a p)articular

manner so that the comnp)iler (can identify the vectors which (-an be operate(d on in

parallel. These machines and compilers (to very well when the structures of the

programs for computations match the architecture thev are written for. Computations

not structured in this manner (1o very poorly on these architectures. It would be

very har(d to get a partially evaluating compiler to identify vectorizable c(omputations

b)e(ause meniorv location is not a notion the partial evaluation computation graphs

give a sense of. An interesting thing that may be said about the t)arallelizing p)artially

evaluating compiler, however, is that it is good at scheduling fine grained p)arallelisnm

on MIMD like architectures where it is possible to utilize this fine grained l)arallelism

5.4 Iterative Restructuring

Iterative restructuring rep)resents the manual ap)proach to parallelization. Remark-

ably there are now many utilities for profiling and analyzing parallelism that allow

progranimers to find bottle necks in their code. One such utility is known as Max-

Par [7] which essentially deduces the data det)endency graph after the computation

is completed and shows the p)arallelism available and that b)eing exploited in various

portions of the programns. A user can then use this to deduce which routines are

parallelizable and may then rewrite the prograim so the compiler can identify and

exploit this t)arallismn.

38 (CHA PTER? 5. ('OM\ PA II().\ I I Ttt) OTHER i)ORIK

The exalliple giveln iII the fit 'o(ductlion of the Perfct Bencihmark perfornmance ohI

the ('rav-YNIP should b e no(ted(t becalise this type (of iiaiiial o)t1illiialliOl W.iS loiie

ill or(der t() get those l)elic(llnharks Intit a forwi that t(i ("ray Y\ IP compilers co(uld

exp)loit iparallelism oil. The (ollipiler ill thils th(iesis ('aii dh thliese t hings aitlit (ilal iall.

Ill lie (compl)ile'r intro(duce(l here. the data (lepel(thelicy graph dloes ln)t ever IIeed to

lbe seen bY thle prgrainnier. It is a(nto'lratiall/ gelierate((l and lised bV the (ompilher

as aii (Vf(tiv(e tool fo)r exploiting tihe liilderlyinig Iarallelislill li it ('oiil)itat iO).

5.5 Handcoding

Hand produced code for a coliip)utatiOn Will look much different froii the compihlrs'

(ode. The hand coding will lo(caize Inanylv relate(d ('oipitat ioi in a part ictilar piece of(

('(dle. This may or iiay not occur oii the compililer whi(ih sp)rea(ds w it thlie ('oil)l)lat lOl

across t he processors (hiring a cycle. This is arguably better th an hand coding I nalluse

hanii'(cod(ing a coml)lex (com)putatioun oil th(lese st aticallv sc(heiuled I arc'hit(c(t ire's would

uiiidoiuite(dlv drive soiienoie inuts. The coltmpiler. iii its infinite Ipatienlice. ('all search

for open slots on a processor and spread out the comiputatiion across thle processors.

5.6 Summary

Ill this sect(ion it has Ibeii, shown that thle use of plartial evaluatiion ii a tparallehiziu•g

(coml)iler ii comlparison to other techniqutes represelnts some (ehfinite adIlvantages ill or-

(der for th ,e exploitatiion of underlying parallelism in numierical (oii)liutatitons. ()ther

mhethods do(not seem to be able to exploit tihe mtnderlyinig tarallelism basically bIe-

cause using t heir methods, they ('ai't. find sOil((If it. Thus partial evaluatiion should

be ('oil)le(l with some of the alrea(ly goo(d tec'hni(quies s(o that tite comp)iler can il(,ntifv

all (If the uiderlying parallelism ill a compuitation and exploit it. Some uiiannal Inel hi-

.5.6. S AL\IN\ILAR Y 39

ods were also shown. One was surprisingly similar to what the partially evaluating

paralhleizinI. compiler tries to (1o autoinaticallh.

40 CHAPTER 5. COMPARISON WIITH OTHER WVORK

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Automatic parallelizing compilers for supercomputers would benefit greatly if they

included partial evaluation as part of their optimization. Besides providing an order

of magnitude improvement for sequential code, the technique exposes inherent par-

allelisin in a program by recreating the data dependency graph for the computation

in the program. By utilizing the newly exposed parallelism, it has been shown here

that parallelizing compilers utilizing this technique can achieve performance as good

as or even better than that achieved by manual means.

WNe have implenented a basic block compiler which utilizes partial evaluation

and static scheduling techniques to show how the resulting fine grain p)arallelism

may be ext)loite(d. The exploitation techniques have been evaluated on two different

highly abstracted programs written in Scheme which simulate 'i-body problems which

are important in the fields of celestial mechanics and particle physics. The results

reveal that it is possible to automatically achieve a factor of 6.2 speedup on an eight-

processor configuration of the Supercomputer Toolkit from a single processor version

41

42 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of the program. This is impressive because the Supercomputer Toolkit utilized by the

compiler has extremely low bandwidth, allowing a processor to send a value effectivelv

every 8 cycles with a latency of 6 cycles. It was also found that the simple heuristic

technique of region scheduling does not scale well for larger parallel processors, though

it does work well on a computer the size of the Supercomputer Toolkit.

Other techniques utilized by parallelizing compilers do not include a mlechanism

that allows the compiler to examine the computations data dependency graph in or-

der to figure out how to parallelize the computation. These other techniques could

easily be complemented by partial evaluation resulting in dramatic speedups of a

computation, even data dependent ones. It is believed that all automatic paral-

lelizing compilers should have a mechanism to view the underlying parallelism in a

computation.

6.2 Suggestions for Future Work

There are two ways to improve the compiler. One way involves extending the com-

piler's capabilities. The compiler could be extended to handle branches and sub-

routines so that it may I'3ndle data dependent computations. The other way is to

increase the level of optimization that is performed. A possible optinmization is to

find a better method of exploiting the fine grain parallelism than region division that

will work well on larger architectures. Perhaps a method like task fusion [10] should

be attempted. Another optimization that could be added involves computing values

redundantly across processors because it is cheaper than transmitting these values in

some cases.

Bibliography

[1] H. Abelson. A. Berlin, J. Katzenelson, W. McAllister, G. Rozas. G. Suss-man. -The

Supercomputer Toolkit and its Applications." MIT Artificial Intelligence Laboratory

Menmo 1249. Cambridge, Massachusetts.

[2] .1. Applegate. M. Douglas, Y. Giirsel. P. Hunter. C. Seitz, G.J. Sussman. "A Digital

Orrery," IEEE Trans. on Computers. Sept. 1985.

[3] A.V. Aho, R. Sethi and J.D. Ulhnan.Compilers: Princzples. Techinques and Tools

Addison Wesley. 1988

[4] A. Berlin and D. Weise, "Compiling Scientific Code Using Partial Evaluation." to

appear in IEEE Computer. Also see MIT Artificial Intelligence Laboratory Memo

nmnb)er 1145. July, 1989.

[5] A. Berlin, "Partial Evaluation Applied to Numnerical Comnputation", in proc(eedings of

the 1990 ACNM Conference on Lisp and Functional Programming. Also see "'A Coin-

pilation strategy for numerical programs based on partial evaluation., MIT Artificial

Intelligence Laboratory Technical Report TR-1144. July. 1989.

[6] S. Borkar. R. Cohen. G. Cox, S. Gleason. T. Gross, H.T. Kmug. M. Lain. B. Moore.

C. Peterson. .J. Pi-per. L. Rankin. P.S. Tseng. .1. Sutton. .J. Url)anski. and .1. Webb.

"iWarp: An Integrated Solution to High-speedI Parallel Computing." Supercomputing

"88. Kissimmee. Florida, Nov.. 1988.

43

44 BIBLIOGRAPHY

[7] G. Cybenko, J. Bruner. S. Ho, "Parallel Computing and the Perfect Benchmarks."

Center for Supercomputing Research and Development Report 1191.. November 1991

[8] J. Ellis, Bulldog: A Compiler for VLIW Architectures. PHD thesis, Yale University.

1985.

[9] J.A. Fisher, "Trace scheduling: A Technique for Global Microcode Compaction.** IEEE

Transactions on Computers, Number 7, pp.478-490. 1981.

[10] Kasahara, Hironori, Honda, Hiroki, Narita. Seinosuke, "Parallel Processing of Near

Fine Grain Tasks Using Static Scheduling on OSCAR", Supercomputing 90, pp 856-

864, 1990

[111 Monica Lam, "A Systolic Array Optimizing Compiler." Carnegie Mellon Computer

Science Department Technical Report CMU-CS-87-187.. May, 1987.

[12] C. Heinzl, "Functional Diagnostics for the Supercomputer Toolkit MPCU Module",

S.B. Thesis, MIT, 1990.

[13] P. Hut and G.,A. Sussman, "Advanced Computing for Science," Scientific American.

vol. 255. no. 10. October 1987.

[14] H. Printz, "Automatic Mapping of Large Signal Processing Systems to a Parallel Ma-

chine," Carnegie Mellon Computer Science Department Technical Report CMU-CS-

91-101., May. 1991.

[15] G. J. Sussman and J. Wisdom, "Numerical Evidence that the Motion of Pluto is

Chaotic," Science, Volume 241, 22 July 1988.

[16] J. D. Ullman, "NP-Complete Scheduling Problems". Journal of Computer and System

Sciencesvol. 10 (1975),pp 384-393.

